“Brighter Than A Thousand Suns”: The Man Who Entered a Particle Accelerator

We have all heard of particle accelerators, if only for the “discovery” of the Higgs boson a few years ago.
And there are just two questions laymen like us ask themeselves about these machines:

1. What the heck are accelerators anyway, and how do they work?
2. What happens if I put my hand in a functioning particle accelerator?

Okay, maybe I’m the only one asking the second question.

© 2017 Robert Hradil, Monika Majer/ProStudio22.ch

Anyway, regarding question #1, CERN’s official website puts it this way:

An accelerator propels charged particles, such as protons or electrons, at high speeds, close to the speed of light. They are then smashed either onto a target or against other particles circulating in the opposite direction. By studying these collisions, physicists are able to probe the world of the infinitely small.
When the particles are sufficiently energetic, a phenomenon that defies the imagination happens: the energy of the collision is transformed into matter in the form of new particles, the most massive of which existed in the early Universe. This phenomenon is described by Einstein’s famous equation E=mc2, according to which matter is a concentrated form of energy, and the two are interchangeable.

As for the second question, from a quick search it turns out that I’m not the only fool asking it: on the internet, as soon as one claims to be working on an accelerator, he or she is overwhelmed by the requests of those who can’t wait to get hit by a bundle of protons in the hope of acquiring superpowers.

Even some physicists at CERN have tried to answer the age-old question of the hand-in-the-accelerator, in the first 4 minutes of this video.
And yet, either because they might know everything about physics but they’re not doctors, or because it is too childish and frivolous a question, these luminaries seem rather clueless and their attempts to answer can be summed up in a quite embarrassed “we don’t know”. (How come they didn’t prepare a better answer? Has no one ever asked them stupid questions before?)

Well, no harm done, because on this delicate issue the only scientist whose answer I would blindly trust is not at CERN, but in Russia.
His name is Anatoli Bugorski, and he didn’t put his hand in a particle accelerator… he stuck his whole head in one.

© Sergey Velichkin – TASS

On 13 July 1978 Bugorski was inspecting the U-70 synchrotron at the Institute of High Energy Physics in the city of Protvino.
Inaugurated in 1967, this circular accelerator with a perimeter of 1.5 km had held the world record in beam energy for five years (the “70” refers to the amount of gigaelectronvolts it can reach in its final phase); and still today it is the most powerful accelerator in all of Russia.

Inspecting such a monster is not quite like opening the hood of your car anche and checking the engine – although, for this writer, these two activities are equally esoteric. To perform maintenance that morning, Burgoski had to actually slip into the accelerator circuit. Therefore, before heading downstairs, he told the control center to turn off the beam in the next five minutes.
He arrived at the experimental room a minute or two in advance, but did not pay it too much attention because he found the door was open; furthermore, the safety signal was off, meaning that the machinery was no longer in operation. “How efficient, my good old pals, up at the station! – he must have thought – Knowing I was coming down here, they’ve already turned everything off.”

The boys in the control room.

All being nice and quiet, he decided to open the accelerator.
What he didn’t know was that the door had been left ajar by mistake; and that the light bulb inside the warning sign had just burned out.

© Sergey Velichkin – TASS

As soon as he peeked inside the corridor, his head was instantly pierced by a beam of protons of 2×3 millimeters in size, shot at a dizzying speed.
Burgoski saw a flash “brighter than a thousand suns”, as the beam entered the back of the skull and, in a fraction of a second, burned a straight line through his brain, coming out near his left nostril.
The whole thing was too fast for Burgoski to feel any pain; but not fast enough (at least, this is what I like to imagine) to prevent him from mentally cursing the security staff.

Burgoski was taken to the infirmary, and within a short time the left half of his face was swelling. The beam had pierced his middle ear, and the wound continued to slowly burn the nerves in his face. But the real problem was radiation.
In that thousandth of a second, Bugorski had been exposed to a radiation of 200,000 / 300,000 röntgen, which is 300 times greater than the lethal amount.

To the scientists, this unfortunate graduate student had suddenly become an interesting case study.
Burgoski’s days were numbered, so he was rushed to a clinic in Moscow to be placed under observation during what were presumably the last couple of weeks of his life. Scholars came from all over just to watch him die, because no one before him had ever been the victim of such a concentrated beam of radiation, as this article in The Atlantic reminds us:

unique to Bugorski’s case, radiation was concentrated along a narrow beam through the head, rather than being broadly distributed from nuclear fallout, as was the case for many victims of the Chernobyl disaster or the bombing of Hiroshima. For Bugorski, particularly vulnerable tissues, such as bone marrow and the gastrointestinal track, might have been largely spared. But where the beam shot through Bugorski’s head, it deposited an obscene amount of radiation energy, hundreds of times greater than a lethal dose.

Yet, in spite of any prediction, Burgoski did not die.
Following the accident he completely lost hearing from his left ear (replaced by a tinnitus), suffered epileptic seizures and facial hemiparesis for the rest of his life. But apart from this damage, which was permanent but not lethal, he recovered his health completely: within 18 months he was back to work, he completed his doctorate and continued his career as a scientist and experimental coordinator.
He was forbidden from talking about his accident until the end of the 1980s, due to Russia’s secrecy policy surrounding anything even remotely connected with nuclear power. Burgoski is still alive and well at the age of 77.

Maybe his story does not exactly answer our childish question about what would happen if we stuck our hand inside an accelerator, but it can give us a rough idea.
As summarized by Professor Michael Merrifield in the aforementioned video:

Viaggi spaziali

L’esplorazione spaziale, iniziata in modo pionieristico alla fine degli anni ’60, ha conosciuto un momento “morto” negli ultimi decenni, ma oggi sta tornando ad essere parte integrante dei progetti delle grandi agenzie aerospaziali. Gli Stati Uniti hanno pianificato i primi viaggi su Marte per la metà degli anni 2030; ESA, Russia e Cina sembra abbiano in progetto missioni similari. Ma al di là dello stimolo che questi salti nell’ignoto regalano alla nostra fantasia, ci sono dei lati oscuri con cui fare i conti (che sono poi quelli che ci interessano, qui a Bizzarro Bazar!).

Innanzitutto, teniamo presente che le enormi distanze da superare pongono diversi grattacapi. Prendiamo ad esempio una missione su Marte. Il vero problema, sostengono i professori della NASA, sarebbe il costo del “biglietto” di ritorno. Far decollare una nave spaziale dalla Terra richiede già una quantità di carburante inimmaginabile, e dotare il mezzo di una quantità di combustibile tale da permettere il viaggio di rientro è al momento pura utopia. Questo significa che il volo verso Marte sarebbe di sola andata. I primi pionieri dovrebbero divenire dei veri e propri coloni, disposti non soltanto ad esplorare il nuovo pianeta, ma a fondarvi una comunità. Dovrebbero essere scelte coppie in grado di riprodursi, per dar vita alla prima vera colonia marziana che comprenda bambini nati e cresciuti sul Pianeta Rosso. Quanti di voi non esiterebbero un attimo a lasciarsi tutto alle spalle per iniziare una nuova vita su Marte? Quale uomo accetterebbe di partire sereno, sapendo che non farà mai più ritorno, che non vedrà mai più il mare, i suoi famigliari, gli uccelli nel cielo?

Parecchi, a quanto sembra. Da quando il Journal of Cosmology ha indetto il “sondaggio”, almeno 500 volontari si sono presentati all’appello. Persone per cui l’avventura, la curiosità e la gloria valgono più di ogni altra cosa; persone che non hanno più nessun legame; persone che sognano un’epopea spaziale da quando hanno 10 anni. Forse sarà proprio questo il bacino al quale gli scienziati attingeranno, in un prossimo futuro, per selezionare gli equipaggi di questa epocale “invasione”.

Ma i viaggi spaziali sono anche lunghi, e il lato più cupo della nostra personalità può prendere il sopravvento. Lo spazio può diventare una gabbia fatta di paranoie, illusioni e depressione, fatto da cui gli scrittori di fantascienza ci mettono in guardia da molti anni. Innanzitutto, la solitudine. Una solitudine inimmaginabile. Finora i viaggi sono stati troppo brevi per una qualche manifestazione psicologica in questo senso. Ma la NASA continua a ponderare gli effetti dannosi dell’isolamento per lunghi periodi di tempo, tanto da investire 1,74 milioni di dollari nella Virtual Space Station, una sorta di “psicologo-robot” che dovrebbe aiutare e dare consigli agli astronauti depressi dalla profonda solitudine. Nel 2008, uno studio condotto al NHC HealthCare in Maryland Heights ha indicato che un cane robotico si è rivelato un ottimo rimedio per la solitudine dele persone anziane, quasi quanto un cucciolo reale… anche se l’immagine di un astronauta solo nello spazio, che parla e coccola un cane-robot non è delle più confortanti.

Nello spazio, un posto che a torto riteniamo “vuoto”, si spargono radiazioni di vario tipo. Senza la protezione dell’atmosfera, queste radiazioni possono essere pericolose. E non si tratta qui soltanto delle temibili esplosioni di raggi gamma (evento talmente raro da essere trascurabile), ma anche semplicemente delle più comuni radiazioni cosmiche: alcuni esperimenti hanno dimostrato che l’esposizione a questi raggi può causare alterazioni nell’ippocampo, l’area del cervello responsabile della creazione di nuove cellule cerebrali e ritenuta responsabile dell’apprendimento e degli stati di umore. Proteggere con scudi appropriati gli astronauti potrebbe significare ridurre i danni cerebrali e la depressione di un viaggio al di fuori dell’orbita terrestre.

Un altro problema dei viaggi astrali è la fornitura e la purificazione dell’aria. Molti studi condotti sugli scalatori di alta quota hanno dimostrato come uno scarso approvvigionamento di ossigeno porti a un calo di attenzione, di capacità cognitiva e di riconoscimento linguistico. In situazioni ancora più estreme, a ridotto apporto di ossigeno, si verificano danni permanenti al cervello. Per questo si stanno dotando le astronavi di potenti rilevatori, in grado di accorgersi in largo anticipo di un cambio nell’aria della capsula. Vengono sviluppati anche dei software in grado di “misurare” la coerenza delle risposte degli astronauti a determinate domande, per prevenire eventuali danni psichici.

Aggiungete a questo quadro lo stress del lavoro di un astronauta, costantemente vigile e attento, che deve tenere sott’occhio i parametri della missione, controllare l’equipaggiamento, sapendo che soltanto un po’ di lamiera lo protegge dall’agghiacciante vuoto siderale. Molte persone, in situazioni molto meno stressanti, si imbottiscono di psicofarmaci. L’uso e l’abuso di tali sostanze (già oggi utilizzate a bordo delle stazioni spaziali) sarà un ennesimo grattacapo da risolvere. E pensate anche solo per un momento a questa situazione: non siete voi a impazzire nello spazio, ma il vostro collega. Se nella vostra giornata quotidiana c’è sempre un orario di fine lavoro, che vi permette di staccare la spina, beh, su una navicella spaziale non esiste. Per quanto professionali gli astronauti si possano dimostrare, dovranno anche essere addestrati a far fronte a qualsiasi imprevisto, persino il crollo psicologico di uno dei membri dell’equipaggio.

Ed arriviamo infine alla questione più spinosa e difficile. Cosa fare quando un astronauta muore nello spazio?

La mitica Mary Roach, giornalista scientifica autrice dell’imperdibile Stecchiti (2005), ha da poco scritto un libro sui viaggi spaziali. Con la sua consueta scrupolosa curiosità, ha indagato anche il problema della morte nello spazio. E ci ha illuminato sulle ultime tendenze della NASA al riguardo.

La morte, già di per sé destabilizzante, diviene ancora più insostenibile in un ambiente estremo come il cosmo. Nessuno sa come un piccolo gruppo isolato nello spazio possa reagire di fronte alla scomparsa di un membro: sentimenti di paura, perdita di controllo, rabbia, colpa o attribuzione di colpa possono instaurarsi. Di fronte a un decesso che colpisce inaspettatamente un membro dell’equipaggio durante una missione, il tempo per preparare il corpo sarà soltanto di 24 ore, per prevenire infezioni. Ad ogni astronauta verrà chiesto di riempire un diario in cui annotare e sfogare le proprie emozioni al riguardo.  Il corpo, dopo una cerimonia funebre che ricordi quelle terrestri (che serva da guida per la difficile situazione e riaffermi i valori che ci accomunano), verrà deposto in un modulo apposito, studiato per eseguire la cosiddetta Promession: si tratta di un “compostaggio” ecologico dei resti umani, per mezzo del quale il corpo viene completamente congelato, poi scosso violentemente fino a ridurre la salma in una fine polverina. La capsula contenente il cadavere polverizzato verrà poi estromessa dall’astronave, là dove nessuno può vederla, trattenuta da un braccio meccanico, e lì resterà fino a quando l’astronave non rientrerà sulla Terra (ritraendosi poco prima dell’impatto con l’atmosfera); una volta atterrata potrà finalmente avere degna sepoltura. Una particolare attenzione verrà mantenuta sui “sopravvissuti”, per evitare crolli psicologici e follia.

Ecco l’articolo di Mary Roach in cui viene spiegata l’intera procedura (in inglese).

Il sogno di “fare l’astronauta” non ha mai perso il suo fascino. Ma oggi, quando questa fantasia sta quasi per diventare realtà, gli scienziati continuano a interrogarsi su quali siano le vere barriere con cui dovremo fare i conti. E pare che i mostri più pericolosi, gli alieni più letali, prenderanno corpo nella nostra stessa mente.